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THE CONSTRUCTION OF VARIATIONAL PRINCIPLESI" 

P. A. M A Z U R O V  

Kazan 

(~ce/~d 5 May 1995) 

A method of constructing variational principles (VPs) for a class of problems in mechanics is presented. The VPs are derived 
firom variational problems equivalent to satisfying constitutive relations. The physical side of such a derivation scheme consists 
in setting up variational problems by considering the minimum rate of energy accumulation and dissipation. In doing so one can 
distinguish the mechatdsms of energy accumulation and dissipation, which define the,number of variables in the VP. The VPs 
are constructed for a m~tem of transfer equations in the steady case and for the problem of the seepage of an incompressible 
fluid in a deformable medium of complex rhcolo~. The proposed approach simplifi. ~ the procedure for constructing dual VPs 
and can be used to com.Uu~ other VPs for media with complex theology. The derivation of the VP remains the same for problems 
whose solution is defined by the minimum of potential energy. © 1997 Elsevier Science Ltd. All fights reserved. 

1. THE C O N S T R U C T I O N  OF V A R I A T I O N A L  P R I N C I P L E S  (VPs) 

For many problenm in the mechanics of continuous media the VP can be written in the form 

inf It(Y): inf[J ~ F(c)dl"] 
cEU ceULa r 

(1.1) 

where q)(Y) is a sraooth convex functional, f(c) and:F(c) are linear functionals of the components of 
the vector c, Y = Y(c), c = c(~) (for example, c is the displacementvector, Y(c) is the S t r ~  tensor, c 
is the pressure and Y(c) is the pressure gradient), in particular, Y = c(~),  ~ is the solution domain and 
F is the boundary of t2. Furthermore, suppose that a solution and the VP (1.1) exist for the specified 
boundaxy-value problem. Conditions for a solution of the problem to exist are not ~ in this paper, 
nor is the question of uniqueness. In the VP (1.1) one needs to establish the form of the functionals 
q)(Y), f(e) and F(e) and the set of constraints imposed on c. 

We introduce the following notation (.) = (-)°, c = c °, Y = Y(c °) = Y~ for the variables taken on the 
solution. With (1.1'.) we associate the variational problem 

inf Bt*(Y) = inf I [q~(Y)- X°Y] d ~  
Y Q  

(1.2) 

which is equivalent to X ° = grad q~/o) [1, 2], where X Y =  X/Y i -- X1Y 1 - t - . . .  -I- XkYk The vector yo is 
a solution of (1.2) and c ° is a solution of (1.1) and (1.2). Problem (1.2) is trivial, since X ° must be known 
in the whole solution domain f~ to determine yo. 

To construct a full-valued VP it is necessary to transform (1.2) into the form (1.1). The transformations 
of (1.2) are admimible if the solutions of the variational problems related by the transformations are 
attained for the same field c °. A similar variational problem 

inf B~(X) = inf ~ [~0"(Y)- XY°]d~ (1.3) 
X X t ~  

can be written for the construction of the VP 

inf  12 (X)=  in f . I  ~ ( q ) * ( X ) + f * ( b ) ) d ~ + ~  F*(b )d l " ]  (1.4) 
beM* bcM Ln r 

dual to (1.1), where X = X(b), b = b(f~) and ¢p*(X) is the adjoint functional related to q~t r) by the 
Young-Fenchel transformation [3] 
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¢p* (X) = s~p[XY - ~p(Y)] 

Depending on the nature of the problem the functional qffY) in (1.1) can be chosen by considering 
the minimum of the potential energy or the minimum rate of energy accumulation and dissipation. 
By means of ¢p(Y), using the Young-Fencbel transformation with respect to some of the variables Y = 
( Y 1 , . . . ,  Yk), one can define the partially adjoint functionals 

q) (Y0m,  X . ~  ) = sup[X,~Ymt - (p(Y)] 
vm 

where Y0m = (Y1 . . . .  , Ym), Ymk = (Ym+l . . . . .  Yk). Then the variational problem for the construction 
of the VP dual with respect to some of the variables will have the form 

inf sup B~ (Yore, Xmk ) = inf sup ~ [-(P(Y0m, Xm~ ) - X0mY0m + XmtY~t ]d~ (1.5) 
Yore Xmk Y0m Xmk [l 

Instead of (1.2), (1.3) and (1.5), in the construction of the VP one can begin with the variations 

5B~'(Y)= t [~o(Y)-X°SY]d~q, 5B~(X)= j" [&p'(X)-Y°SX]d~ 
t~ ta 

5s. (Yos,X.k)= f [- P(Yo.,Xmk)-X m Y0. + V2,k Xmk]dn 
f~ 

which are equal to zero 

SBI°(Y)=0, 8B~(X)=0, 8B~(Y0m,Xmk)=0 (1.6) 

if and only if the constitutive relations between X and Y are satisfied. 
Variational problems similar to (1.2), (1.3), (1.5) and (1.6) can be written for any smooth convex 

functionals relating arbitrary dual variables X and Y by X = grad q~Y) or Y = grad ¢p*(X), and they 
can be used to construct the VP. 

The above assertions hold for subgradient relations between X and Y [2] 

X ~ acp(Y), Y ~ ~{p'(X) 

where ¢p(Y) is a convex lower semicontinuous characteristic functional, X is the subgradient of q~Y) at 
Y and ~p(Y) is the set of all subgradients of q~(Y) at Y consisting of one element gradq~Y) in the case 
when q~Y) is smooth. The results can be extended to problems with constitutive relations of non-potential 
form, the which variational equations can be constructed. 

2. VARIATIONAL PRINCIPLES FOR THE TRANSFER EQUATIONS 

We will construct the VP for a system of transfer equations in the steady case 
k 

divJ i=  Y. Q j i + o i ,  i=1,2 .... k 
j=l  

~P(I) / ~Ji = -Vpi, a~P(I) / ~Qji  = P j  - Pi 

(2.1) 

(2.2) 

o r  

0q)(P) I a V p i  = - J i ,  aq)(P) / a ( p j  - Pi ) = Qji  

w h e r e  ~F(I) i s  a dissipative potential, I = ( J1  . . . .  , Jk ,  Q21,  • • • ,  Qkl, Q32, • • • ,  Q k 2 , . . . ,  Qk,k-1) are the 
thermodynamic flows, Q# are the densities of internal sources (Qil,  = Qu,  Q//= 0), o*i are the given 
densities of external sources, ~(P) = s u p p l [ - J i V p i  + 1/2Qji (pj - p i ~  is the adjoint dissipative potential 
a n d  P = ( - V p l ,  . . . , V p k ,  p 2 - P l ,  . . . , P k  - P x , P 3  --P2, . . . , P k  - P 2  . . . . .  Pk  --Pk-1) are  t h e  thermodynamic 
forces. In the case of unconnected dissipation mechanisms [4] 

k k 

i=l j>i 
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we have 

O~i / 0Ji = -Vpi, 8~Fji I OQ/i : p j .  Pi (2.3) 

Here and henceforth, when constructing specific VPs the potentials will be assumed smooth and convex. 
Considering the minimum rate of energy dissipation, to construct the VP in terms of the variables I 

we shall begin with the variational problem (1.2), where q~(Y) = ~F(I) and Y = c = I. We transform 
(1.2) using (2.1) ~ d  (2.2) into a VP in which the value of po is not required in the whole domain [2 

k 
i~nf j" (V(I)-P°I)df~ffi inf I (q~(I)+ J~Vp~ - Z Qi~(P; - p~))dfl = 

i ~ ! ~ j>i 

=:inf[~ ( ~ ( I ) - p ~  d i v J i -  ~ Qji(pi-p~))d~+ ~ Jinp~dr]= 
! Eft j>i r 

=:inf[~(~(1)-p~(divJi-j~Qji))d~+!Jinp~dr']= 

== rj. *(I)dg~+~,Jinp;dF]-~P;"'idg~r 

Formulating the boundary conditions 

ji.=j;, on r~, riq+r,p=r, i=1,2 ..... k (2.4) 

and discarding the; constant terms, we obtain the VP 

r . ] inf I I(1) = inf I ~F(1)d~ + Y I JinP; d[" 
~.(2.~>,<2.4> ~.<2.~>.¢2.4>La if,  r,e 

(2.5) 

We shall constvact several VPs dual to (2.5) in some of the variables, assuming for clarity that the 
dissipative mechmdsms are unconnected. To construct the VP in terms of the variables In, P,,a, Iq we 
shall begin with the variation 5B~(in, P, nt,, Iq), where 

lm=(J I  ...... Jmi, Pmk=(-VPm+l ..... -VPk), I¢=(Q21 ..... Qkl,Qs2 ..... Qk2 ..... Qk.k-l) 

Introducing the notation 

tP3(Im, Pmk,lq)= ~m(Im)-~Pmt(Pr,  t t )+ tlSq(lq) 

m k k 
t~m(Xm)= i=IZ tl~i, ~)mk(Pmk) = ifm+lZ ~ i '  t]lq(lq)=j~>i., t[Iji 

after reduction we obtain 

m k 
= I 5~(Im,P, ,~,Iq)+ Z Vp;SJi - Z J;SVpi - 8B~ (Ira' Pr~'Iq) a " i=1 i=m+l 

*--P~')~QjI d ~ =  8W3(Ira,Pmk,lq)+~'~ div(p~SJi)-  - ~ i  (pj  
i=l 

k k m o k 

- pTdivSJ i -  E div(J~.Spl)+ ~ divJ~.Spi+E Pi~. 5Qji+ 
i=l i=m+l i=m+l i=i j=! 
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' ° ' /  ' /  
• "1" ~. Pi ~.~ ~JQji d ~  m I (8W3(Im'Pmk'Iq)-  p;8 d i v J i -  Y. Qji + 

ifm+l j=l fl i=l j=l 

.c o. 1) + £ div J] - £ Q)} i + £ i £ Q~i + Pi £ SQji a n  + 
i=m+l~, j=! i=m+l~, j=l j=l 

m k 

i=1 r i=m+lr 

Using the equalities 

k 
• o o * 

d l v J i  - ~ Qji = Oi" 
j=l 

~Pi ~ Q;i + P~ ~, ~ j i  = ~) Pi Qji 
j=l j=l "= 

which preserve the solution of the problem, we obtain the variational equation 

i ( Im,Pmk, lq)- i= ' 

+iffim~+l ~ Pi Qji da"F ~. I P~JJin d r -  ~" I J~n~}Pi d r  = 0 
i=1 r' ifm+lr" 

Under  the constraints on the variables 
k 

divJi  = ~, Qji +Oi' 
j=l 

Jin = Jm o n  

p, = p~" on r,,, 

the variational equation (2.6) implies the VP 

i = 1,2 ..... m 

Fiq, i=1 ,2  ..... m 

i = m + l , m + 2  ..... k 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where 

inf pSU[~.9)~e(Z 13 (Ira' Pro*, Iq ) lm ,1q¢(2.7),(2.8) 

/ . r ' /> l , ( I . , p , , ~ , l q ) = J  + , ( I , , , P ~ , I , ) +  ~ pi al + Y. Qjl + 
Q i=m+l  ~, j = l  

m k 
+Y- I p;J~,dl'-  Y. I J;.p,dr. p,,~ =(p.,+l ..... f,,) 

i=l r~, i=n,+lr~ 

(2.10) 

In a similar way we can construct other VPs. For example, the VPs in terms of (J1, . . . .  Jm, P l , " ' ,  
Pk) and (Pl . . . . .  Pk) subject to the conditions 

Pi = P~" on F/p, i = 1,2 .. . . .  k (2.11) 

have the form 

inf sup /4(I=,p), inf I2(P) (2.12) 
l,u ~(2-8) pC(2.9) pc( 2.1 I) 

where 

14(Ire'P)= tl~ ( ~ m ( l a ) - @ ' { p ~ ) - * ' ( P q ) - i = l  ~ p i d i v J i + P i O ~  tQ*  
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m k 
+E f p~'.1~,ar- y i J~p,,,n" 

i=1% i=.+tr~ 
k 

t2(p)= I ~fq,(P)-p~')dt-~+ Z I JT, p d r  
Q i=1 r'/q 

k 
~ [}q (Pq) - -  ~i  ¢~ji" Pq - - ( P 2 - P l  . . . . .  Pk -- Pl,P3 -" P2 . . . . .  Pk - - P t - 1 ) '  P=(Pl . . . . .  P t )  

The VP in tern~s of p = (Pl, . . . .  Pk) is well known [5]. Here P = P(b), b = p. It can be shown by 
direct verification that the VPs (2.5), (2.10) and (2.12) are equivalent to the solution of the system of 
equations (2.1) and (2.2) with boundary conditions (2.4) and (2.11) and the equalities 

inf ll(1)= sup = inf sup 1 4 ( l . , p ) =  
I¢(2.1).(2.4) pE(2.n) [-12(p)] Ime(Z.8)p¢(2.9) 

= inf sup 13(l . ,Pmt, lq)  
I,,,. lq E(2.7 ).(2.8) p ~  ~('2.9 ) 

hold. When choosiing the VP it is not required to know the boundary conditions. The combinations of 
unknown variables given on the boundary for which there is a solution of the problem can easily be 
found by analysing the boundary integrals. To obtain I2(p) without using the boundary conditions one 
should take the boundary integrals along the whole boundary F 

k 

i=! F 

which corresponds to the boundary conditions Jm = ~ on Fq (i = 1, 2 . . . .  ,k). 
To use the boundary conditions (2.4) and (2.11) the variablespi subject to variation must satisfy (2.11). 

Then 
k k k 
Y I J'.p, d r=  Y I J~.pdr+ E 1 J ' .pNr 
i=1 U i=1 U/q i=1 r'ip 

and the integrals over F¢, which are constant, can be omitted. Ifpi = Pc on F~, F~ = Fq (i = 1, 2 , . . . ,  k) 
then to determine the solution it suffices to specify the normal component~  = -Pin ~- • + J~  

k 
E I J,,p, dr = I J~p~ur 
i=1 r~q r~ 

If pc = const on El, then to determine the solution it suffices tO know the total divergence G ° on Fq 

~ J~pcdI'=Gep c IG°=~ J~dI'l 
r~ rq 

where Pc is unknown, even if constant on I'q. 

3. VARIATIONAL PRINCIPLES OF SEEPAGE CONSOLIDATION FOR 
A DEFORMABLE MEDIUM OF COMPLEX RHEOLOGY 

We write the ~ ; tem of equations of seepage consolidation [6] in the form 

o [ .  t~.j-P.i =0, d i v q + d i v u = 0  

-q  = ~p(Vp)~Vp if -Vp = ~Wq(p)/'Jq 

(3.1) 

(3.2) 

(3.3) 
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where (3.1) are the balance equations, (3.2) and (3.3) are the constitutive relations for the fluid and 
solid phases, Wq(q) and O,(Vp) are the dissipative and adjoint dissipative potentials for the fluid phase, 
q is the rate of seepage,/~ is the pressure, ~ are the components of the effective stress tensor, ui are 
the components of the displacement vector u and ~ = 1]2(ui, / + uj,i) are the components of the strain 
tensor t ,  e# = ~.  The solid phase can be modelled by a viscous element, which is, in turn, connected 
with a Kelvin-Voight element [4]. In the viscous element the dissipative mechanism is defined by a 
potential Wl(e0 and in the Kelvin-Voight element by W2(e2). The mechanism of potential accumula- 
tion is given by W3(t3). Thus, the constitutive relation (3.3) has the form 

G i U = ~ J ( e l ) / c ~ e l i  j ,  G 2 i j = ~ t P 2 ( e 2 ) / ~ e 2 i j ,  G 3 ¢ = ~ W 3 ( ¢ 3 ) / ~ e 3 i  j 

f ly  = Glij = G2ij + ff3ij, e/j = eli j + e2i j ,  e2i j = e3i j 

(3.4) 

We will construct the VP in terms ofu  andp, which are the usual variables used in numerical solutions 
of consolidation problems. Considering the minimum rates of energy dissipation and accumulation, we 
obtain the following variational equation corresponding to (1.2) 

(3.5) 
3 

8f (Wl(e,)+ W2(e2)+ W3(~3)+ tpc(q)_ y~ o~.jet q + VpOq)d~ = 0 
Q k=l 

where a 1, ~2, ~ ,  q are the variables subject to variation, W3(¢3) = (~W3(ts)/~3/j)e~ and u 1, u 2, u s being 
the displacement vectors for the elements 1-3, respectively. It follows that the variational equation for 
constructing the VP in terms of/11, ~2, 1~3 and p taking the equality ~ = ii 3 into account has the form 

where 

( 3o ) S/ (u l ,d2 ,p )=Sf  w(dl ,u2,p)  - ~. Okqeb~-q°Vp r i f t=0 (3.6) 
fl k=l 

tP( d ' ,  62, P) = tPI (el) + ~P2 (e2) + W3 (~2) - ~p (Vp) 

It can be seen that Eqs (3.5) and (3.6) are equivalent to the constitutive relations (3.2) and (3.3). After 
reduction we find from (3.6) that 

f o ~  . o o o 81( dl, d2, P) = ~ (8~P( dl, d2, P) - oij °elij - (02ij + ff3ij )~e2ij - qi 8P, i ) d ~  = 
fl 

= I (SW( dl ,u2,p) - OYijOSeij - q~SP, i)dF~ = 
f~ 

fo • o • .o .o o 
= I (~I ' / (  I~1' 112' P) - ~i j  ~ui, j  -I- p ~ui, i - pO ~Ui,i -- Ui,i~)P + Ui,i~P + qi, i~P) d[2 -- 

t~ 

F F 

"l'(Ui°,i "1" qi°i)Sp)da - f q*nSpdI'.= I (SW(d', d 2 , p) + (o f* - pO 5i j ),j 8tii - 
r fl 

- (  P° S div d + Sp div u° ) + ( div d° + div q° )SP ) all2- I n~ ~)uidF - I q*nSP dI', 
r F 

H i  = ( o / -  P$ij  )n j  

Using the substitutions and variations of the functional 

(a f  ° o - p 8ij).j = O, divu°+divq °= 0 

p° 8div d + 8pdivd°= 8(p div d) 

which preserve the solution a °, p° of the problem in (3.6), we obtain the variational equation 
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8 I  (W(dl , l~2,p)_ pdiv(dl  + d 2 ) ) d ~ _  f i-]iS(ui* .I + fi/2)dl-._ f q~Spdl" = 0 (3.7) 
fl F F 

Equation (3.7) implies the VP 

inf sup l (u  1,6 2; p) (3.8) 
61, n2, p 

which is equivalent to solving the system of equations (3.1), (3.2) and (3.4) with boundary conditions 
IIi  = II°i, q,, = q°n on V, where 

/ ( l i l ' l l 2 ' p  ) ---- S ( W ( f i l , u 2 , p ) - p d i v (  ~i + f i 2 ) ) d ~ - f  i-l~(fi] +ti2)dr " -  S q~pdF 
tl r r 

The deformation field ,!2 = ,~2(t) in the VP (3.8) defines the accumulation of  elastic energy at t ime 
t. The VP (3.4) holds whenever  the potentials ~Fl(el), qJ2(e2) are non-differentiable and characterize 
the motion of viscoplastic and rigid-plastic media [7]. In the same way as in the previous computat ion 
o n e  can construct the VPs for other  choices of  variables and determine various combinations of  
admissible boundaxy conditions. 

Note that other VPs [8-12]f,  which were obtained by different methods, can be derived using the 
above scheme. A similar scheme was used to construct VPs in seepage and consofidation theories in 
[13-151., 
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