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THE CONSTRUCTION OF VARIATIONAL PRINCIPLES

P. A. MAZUROV
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(Received 5 May 1995)

A method of constructing variational principles (VPs) for a class of problems in mechanics is presented. The VPs are derived
from variational problems equivalent to satisfying constitutive relations. The physical side of such a derivation scheme consists
in setting up variational problems by considering the minimum rate of energy accumulation and dissipation. In doing so one can
distinguish the mecharisms of energy accumulation and dissipation, which define the number of variables in the VP. The VPs
are consttucted fora system of transfer equatmns in the steady case and for the problem of the seepage of an mcompressible

.....

whose solution is deﬁned by the minimum of potential encrgy. © 1997 Elsewer Science Ltd. All rights reserved.

1. THE CONSTRUCTION OF VARIATIONAL PRINCIPLES (VPs)
For many problems in the mechanics of continuous media the VP can be written in the form

inf I,(Y)= inf[ | (@(Y)+ f(e))dQ+ | F(c)dl"] (1.1)
ceM ceM| o r

where ¢(Y) is a smooth convex functional, f{c) and F(c) are linear functionals of the components of
the vector ¢, Y = Y(c), ¢ = ¢(Q) (for example, c is the displacement.vector, Y(c) is the strain tensor, ¢
is the pressure and Y(c) is the pressure gradient), in particular, Y = ¢(Q), Q is the solution domain and
I is the boundary of Q. Furthermore, suppose that a solution and the VP (1.1) exist for the specified
boundary-value problem. Conditions for a solution of the problem to exist are not discussed in this paper,
nor is the question of uniqueness. In the VP (1.1) one needs to establish the form of the functionals
¢(Y), f(c) and F(c) and the set of constraints imposed on c.

We introduce the following notation (-) = (:)°, ¢ = ¢°, Y = Y(c°) = Y for the variables taken on the
solution. With (1.1) we associate the variational problem

ir‘nrf B (Y)= igf j [(Y)-X°YldQ (1.2)
a

which is equivalent to X° = grad ¢(Y°) [1, 2], where XY = X)Y; = XYy + ...+ XY, The vector Y° is

a solution of (1.2) and ¢° is a solution of (1.1) and (1.2). Problem (1.2) is tnv1al since X° must be known

in the whole solution domain Q to determine Y.

To construct a full-valued VP it is necessary to transform (1.2) into the form (1.1). The transformations
of (1.2) are admissible if the solutions of the variational problems related by the transformations are
attained for the same field ¢°. A similar variational problem

inf By(X) = inf | [¢"(Y)-XY°}dQ (1.3)
X X g
can be written for the construction of the VP

. f l x - - * - *
S 2(X) blenlg,[‘f1 (e X)+f (b))dQ+lI_ F (b)dl“] (1.4)

dual to (1.1), where X = X(b), b = b(Q2) and ¢*(X) is the adjoint functional related to ¢(Y) by the
Young-Fenchel transformation [3] '
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o (X)= sup[XY - ¢(Y)]

Depending on the nature of the problem the functional @(Y) in (1.1) can be chosen by considering
the minimum of the potential energy or the minimum rate of energy accumulation and dissipation.
By means of ¢(Y), using the Young—Fenchel transformation with respect to some of the variables Y =
(Yy, . . ., Yy), one can define the partially adjoint functionals

(p(YOm ’ xmk ) = sup[kaYmk - ‘p(Y)]
Yok

where Yo, = (Yp, - - - s Yu)y Yot = (Ypma1s - - - » Yi). Then the variational problem for the construction
of the VP dual with respect to some of the variables will have the form

inf sup By (Yo X ) = inf sup | {~0(Yg Xot) = Xom Yom + Xk Youi 142 1.5)

Yom Xmk Yom Xmk Q
Instead of (1.2), (1.3) and (1.5), in the construction of the VP one can begin with the variations

8B;(Y) = ‘]) [3(Y)-X°8Y1dQ, 8B(X)=[ [5¢"(X)-Y°5X]dQ
Q

8Bf‘;(YOrn ’ xmk ) = I [_a‘p(YOm ’ xmk ) - xarnSYOm + Y:;kaxnxk ]dﬂ
Q

which are equal to zero
8B} (Y)=0, 8B;(X)=0, &B;(Yy, X,;)=0 (1.6)

if and only if the constitutive relations between X and Y are satisfied.

Variational problems similar to (1.2), (1.3), (1.5) and (1.6) can be written for any smooth convex
functionals relating arbitrary dual variables X and Y by X = grad ¢(Y) or Y = grad ¢*(X), and they
can be used to construct the VP.

The above assertions hold for subgradient relations between X and Y [2]

X e 9p(Y), Ye 39"(X)

where @(Y) is a convex lower semicontinuous characteristic functional, X is the subgradient of ¢(Y) at
Y and d@(Y) is the set of all subgradients of ¢(Y) at Y consisting of one element grade(Y) in the case
when ¢(Y) is smooth. The results can be extended to problems with constitutive relations of non-potential
form, the which variational equations can be constructed.

2. VARIATIONAL PRINCIPLES FOR THE TRANSFER EQUATIONS
We will construct the VP for a system of transfer equations in the steady case
div], = é Q;+0;, i=12,..k (2.1)
¥ I)/dJ; =I—-VP.'- d¥(1)/3Q;; = p; - p; (22)
or
d0®(P)/dVp; =-J;, I®(P)/d(p;-p;)= Qi

where W(I) is a dissipative potential, I = (J;, ..., Jg, Q15 - - - » le, Q32, . , O - - - ; Ok 1) are the
thermodynamic flows, Q; are the densities of mtemal sources (Qy, = Oy, Qi = 0), 6*; are the given
densities of external sources, ®(P) = sup p, |-J;Vp; + /2QJ, ;- .S is the ad]omt dlss1pat1ve potential

andP = (-Vpy,...,Vpe,p2—p1,- .., Pe=P1,P3—P2 - - - »Pk = P2 - - - » Pk~ Pi1) are the thermodynamic
forces. In the case of unconnected dissipation mechanisms [4]

Y= Z ¥, + 2 ‘l’ ¥ =¥;J;). ‘Pj.' =q‘ji(Qﬁ)

i=1 Jj>i



The construction of variational principles 421

D(P)= Z D, + E ®;, P, =0,(Vp) @;=9;(p;-p)

i=1 j>i
we have
0¥;/d);=-Vp;, d¥;/30;=p;-p; (23)
Here and henceforth, when constructing specific VPs the potentials will be assumed smooth and convex.
Considering the minimum rate of energy dissipation, to construct the VP in terms of the variables I

we shall begin with the variational problem (1.2), where ¢(Y) = ¥(I) and Y = ¢ = 1. We transform
(1.2) using (2.1) and (2.2) into a VP in which the value of P° is not required in the whole domain Q

inf | (D~ P = inf | (¥ +1,95; - S (7} - pi)dQ =
j>i

k
: i'}f[;{ ¥ D= pi div]; - 2 0i(pj - piNdQ+[ Jynpidl ] =
j>i

=ir;f[1 [\P(I) p.(de > Q,.del TP} ]

0 J=i
== Ielz‘\zfl)[!: ‘I‘(I)dﬂ+i[ \J,-np, ] j Di 0 dQ
Formulating the boundary conditions
Jn=Jin OB T, T,+T,=T, i=12,..k (24)
and discarding the: constant terms, we obtain the VP

LM _le(2l)(2 4)|:I ‘P(I)dﬂ+z [ Jipidl (255)

e 1) (2.4) Q i=l T,

We shall construct several VPs dual to (2.5) in some of the varlables, assuming for clarity that the
dissipative mechanisms are unconnected. To construct the VP in terms of the variables L,, P, I, we
shall begin with the variation 8B (L, P, L), where

L,=p.Jd m), Pk =(=VPpirs- =) I, =(Qa1, s Q1 @250 Gh2o s Qi)

Introducing the notation

WLy, Py, 1) = W,y (1) ~ @y (P ) + W, (1)

‘P,,,(Im)=g ¥, ®,P,)= 3 O, w1, )=3 v,

i=m+1 Jj>i

after reduction we obtain

8B (1, Py 1) = [ | 8¥3(L,, Pt I, )+2 VpidJ; - 2 J:8Vp, -

Q i=m+1

"i (P;‘P;)sti)dQ=,[ (S\PS(IM’PM’Iq)-"il div(p;8J;) -
Q i=

j>i

-3 pidivel,— 3 dviap)+ S avIidp+ E pi 3 80+

i=1 i=m+1 i=m+l i=1 j=1
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m k
+ 2 pl Z SQJ,)d‘)=I (S\PS(IM’ mk’I )—Zl pfS[dle,- 2 jS)+
Q i= j=1

i=m+]  j=1

j=1

+ f l(de - E QJ,J Di f‘, l(ﬁp, h QJ, +p} Z 8Q],Ddﬂ+
=m+ i=m+ j=1

‘s

&
+ [ pid,dr - 3 | J;3pdl
r

1 f=m+IT

Using the equalities

k k k k
divl;- X Qi=0;, ;% Qi+p X 30;; =5(Pi )) jS)
j=l j=1 j=1 j=!

which preserve the solution of the problem, we obtain the variational equation

I (S\PJ(IM’PM'I ) Z P,os(d“'-] 2 Qp]"’ Z O; 8p1

Q i=m+l

i=m+1 i=1 i=m+IT

m k
+ Z s(p' Z Qp))dn Z I p,?&li,,dr‘— Z j J;lspldr=0
j= r
Under the constraints on the variables

k
diVJ, = Z Qli-l"O',-, i=1,2,...,m
jo

Ja=J, on T,

g0 i=L2,....m

pi=pi on I‘,,,, i=m+l,m+2,..,k
the variational equation (2.6) implies the VP

L.l el(gfmzs) o c.9) by P 1)

where

L1y, pp: 1) =] (\PS(lmvak’l )+ E p,(G + Z Q,,Ddﬂ

i=m+1
+_2 Ip dr Z [J,,,p,dl‘ P = (pm+l’ ’pk)
i=] l".p n-m+lr

In a similar way we can construct other VPs. For example, the VPs in terms of (J;, . . .

pi) and (py, . . ., py) subject to the conditions
pi=p; on [, i=12,.k

have the form

- inf I.A,..p) i
lmxe?Z.S)p,es? '9) «(L.P) pel(l;.fmlz(p)

where

14(10.,?):‘{ (‘ym(lm)-¢nk(Pmk)_‘bq(Pq)— E Pi divJ,-l-p,G,?}Kl*‘
i=1

(26)

@7

(2.8)
(2.9)

(2.10)

’mepl"--’

(2.11)

(2.12)
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+3 [ pjJndl - §: | JapdT

i=1 |'" i=ﬂ+l|‘-"

L(p)= I (®(P) - po; )m+z| | Jnpdl
i=1 h,

®,P)= Z‘P Py =(Pr=pProe s Pk = P1 Py = Pose s P = Prct)r P=(Prseees Py)

>

The VP in terms of p = (py, . . . , py) is well known [5]. Here P = P(b), b = p. It can be shown by
direct verification that the VPs (2.5), (2.10) and (2.12) are equivalent to the solution of the system of
equations (2.1) and (2.2) with boundary conditions (2.4) and (2.11) and the equalities

Ie(2T)§2 o (I)“ [ ~hl= .le!(lg.s)p:?&)l‘(l"p):
= inf SU l3(l,,,,P..p q)

L g €(2.7).(2.8) Py €(2.9)

hold. When choosing the VP it is not required to know the boundary conditions. The combinations of
unknown variables given on the boundary for which there is a solution of the problem can easily be
found by analysing the boundary integrals. To obtain I;(p) without using the boundary conditions one
should take the boundary integrals along the whole boundary I'

k
T IJ
i=l

which corresponds to the boundary conditions J, = J,on T, (i = 1,2,...,k).
To use the boundary conditions (2.4) and (2. 11) the vanables p; subject to vanatlon must satisfy (2.11).
Then

M

l{ "lpldr Z I Jl'lpldr‘.’- z I "lpl

i=] l‘lq ,

i

and the integrals over I, which are constant, can be omitted. If p; = p.on I, [, =T, (1 =12...,k)
then to determine the solutlon it suffices to specify the normal component‘g" =Jin P04 J"k,,

M

mpidr= I J:Pcdr

)

~.
]

1T

5

If p. = const on I, then to determine the solution it suffices to know the total divergence G° on T,
| JapdU =G°p, [G°= | deF}
rﬂ rq

where p, is unknown, even if constant on T,

3. VARIATIONAL PRINCIPLES OF SEEPAGE CONSOLIDATION FOR
A DEFORMABLE MEDIUM OF COMPLEX RHEOLOGY

We write the system of equations of seepage consolidation [6] in the form

,” -p;=0, divq+diva=0 3.1)
= ¢,,(‘Vp)/3Vp if -Vp=a¥,(p)dq (32)

= Fi(e;. ;) (33)
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where (3.1) are the balance equations, (3.2) and (3.3) are the constitutive relations for the fluid and
solid phases, ¥,(¢) and ®,(Vp) are the dissipative and adjoint dissipative potentials for the fluid phase,
q is the rate of seepage, p is the pressure, ¢}; are the components of the effective stress tensor, u; are
the components of the displacement vector u and €; = 1/2(u;; + u;;) are the components of the strain
tensor €, ¢; = &;. The solid phase can be modelled by a viscous e(ement, which is, in turn, connected
with a Kelvin-Voight element [4]. In the viscous element the dissipative mechanism is defined by a
potential ‘¥(e;) and in the Kelvin—Voight element by ¥;(e;). The mechanism of potential accumula-
tion is given by Wj(€;). Thus, the constitutive relation (3.3) has the form

Glij =a‘*‘(e|)/ae|,'i; 02,~j =a‘*’2(02)/ae2ij, 0'3‘7 =a%(€3)/a€3ij (3.4)
O'if =61ii =62ij +0‘3,~j, e,.j =e!ii +e2ij, eZij =e3"i

We will construct the VP in terms of u and p, which are the usual variables used in numerical solutions
of consolidation problems. Considering the minimum rates of energy dissipation and accumulation, we
obtain the following variational equation corresponding to (1.2)

. 3
8 (‘¥ (e )+ Wale)) + Wales)+ ¥y(@)- X ole; +Vp° g =0 (35)

where o', 02, &, q are the variables subject to variation, Ws(e3) = (9Ws(€3)/0e3;)e3;5 and u!, u?, u’ being
the displacement vectors for the elements 1-3, respectively. It follows that the variational equation for
constructing the VP in terms of o', o, * and p taking the equality ¥ = & into account has the form

3
S’ . u?, p) =8 (‘P(ﬁ',ﬁz, p)- I oy —q°Vp)dQ =0 (3.6)
Q k=1
where
@', u?, p) =¥ (e))+ ¥ (e))+ Wi(e;) - @, (Vp)

It can be seen that Egs (3.5) and (3.6) are equivalent to the constitutive relations (3.2) and (3.3). After
reduction we find from (3.6) that :

810, 0%, p)= | (B¥(0', 0%, p) - o[ Bey; — (03 +03;)Bey; — gi8p,; )dQ =
Q

| ¥ 0%, p)-ofde; - q78p,;)d2 =

Q
= ‘[] Y@, w2, p)- 0’5"811,-,]- + p°Ou; ; — p°du; ; — u; Sp+u; Op + q; Op)dQ -
- ! qo8pdT = i BP@', a2, p) - (o - p°8;)di; ; — (p°Bi;; +8pif; )+
+u7; + q?.i)ﬁp)dﬂ—l qn8pdl-= ‘I) @¥@', w2, p)+ (] - p°8;) ;i -
~(p°8diva +8pdivac®) +(divu® +divq®)dp)dQ — | T138u,dl - 1{ q25pdl,

r

IT; = (o} - p8;)n;

Using the substitutions and variations of the functional

((55° - p°8,-j).j =0, diva°+divg°=0
p°ddiva+38pdivuc=8(pdiva)

which preserve the solution #°, p° of the problem in (3.6), we obtain the variational equation
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5 ‘j) (¥@',w?, p) - pdiv(a' +u?))dQ- | TI38(i} +u?)dT - | ¢28pdT =0 (3.7
r r
Equation (3.7) implies the VP
inf supI(a',w%; p) (3.8)
W, n, } 4

which is equivalent to solving the system of equations (3.1), (3.2) and (3.4) with boundary conditions
II; =I1%¢q, = q°, on I, where

1'% p)= | (Y@@', 6%, p)- pdiv(a' +u?))dQ - [ (4! +42)dl - | g2 pdT
Q r r

The deformation field €; = €(f) in the VP (3.8) defines the accumulation of elastic energy at time
t. The VP (3.4) holds whenever the potentials \Py(e,), \P»(e;) are non-differentiable and characterize
the motion of viscoplastic and rigid-plastic media [7]. In the same way as in the previous computation
one can construct the VPs for other choices of variables and determine various combinations of
admissible boundary conditions.

Note that other VPs [8-12]{, which were obtained by different methods, can be derived using the
above scheme. A similar scheme was used to construct VPs in seepage and consolidation theories in
[13-15]).%
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